Längere Quantenzustände für bessere Quantenspeicher Längere Quantenzustände für bessere Quantenspeicher - Computerwelt

Computerwelt: Aktuelle IT-News Österreich


24.11.2016 Klaus Lorbeer/pi

Längere Quantenzustände für bessere Quantenspeicher

Wie kann man Quanteninformation möglichst lange abspeichern? Einem Team der TU Wien gelingt bei der Entwicklung von Quantenspeichern ein wichtiger Schritt nach vorne.

Messapparatur zur Herstellung von langlebigen Quantenzuständen.

Messapparatur zur Herstellung von langlebigen Quantenzuständen.

© TU Wien

Die Speicher, die wir heute für unsere Computer verwenden, unterscheiden nur zwischen 0 und 1. Die Quantenphysik erlaubt aber auch beliebige Überlagerungen von Zuständen. Auf diesem Grundsatz, dem "Superpositionsprinzip", beruhen Ideen für neue Quantentechnologien. Ein zentrales Problem daran ist allerdings, dass solche quantenphysikalischen Überlagerungen sehr kurzlebig sind. Nur für eine winzige Zeitspanne kann man die Information aus einem Quantenspeicher zuverlässig auslesen, danach ist sie unwiederbringlich verloren.

An der TU Wien ist nun in der Entwicklung neuer Quantenspeicherkonzepte ein wichtiger Schritt nach vorne gelungen. In Zusammenarbeit mit dem japanischen Telekommunikationsunternehmen NTT arbeiten die Wiener Forscher unter der Leitung von Johannes Majer an Quantenspeichern aus Stickstoffatomen und Mikrowellen. Durch ihre unterschiedliche Umgebung weisen die Stickstoffatome alle leicht unterschiedliche Eigenschaften auf, wodurch der Quantenzustand relativ schnell "zerläuft". Durch gezielte Manipulation eines kleinen Teils der Atome kann man diese jedoch in einen neuen Quantenzustand bringen, der eine mehr als zehnfache Lebensdauer hat. Diese Ergebnisse wurden nun im Fachjournal "Nature Photonics" veröffentlicht.

Stickstoff im Diamant
"Wir verwenden synthetische Diamanten, in denen einzelne Stickstoffatome eingebaut sind", erklärt Projektleiter Johannes Majer vom Atominstitut der TU Wien. "Den Quantenzustand dieser Stickstoffatome koppeln wir mit Mikrowellen, das ergibt ein Quantensystem, in dem wir Information speichern und später wieder auslesen können."

Die Speicherdauer in diesen Systemen ist allerdings durch die inhomogene Verbreiterung der Mikrowellenübergänge in den Stickstoffatomen im Diamantkristall beschränkt. Nach etwa einer halben Mikrosekunde kann der Quantenzustand nicht mehr zuverlässig ausgelesen werden, das eigentliche Signal geht verloren. Das Team um Johannes Majer hatte nun die Idee des "spektralen Lochbrennens", einem Trick,  der es im optischen Bereich ermöglicht Daten in inhomogen verbreiterten Medien zu speichern, für supraleitende Quantenschaltkreise und Spin-Quantenspeicher zu adaptieren. 

Dmitry Krimer, Benedikt Hartl und Stefan Rotter (Institut für Theoretische Physik der TU Wien) konnten in einer Theoriearbeit zeigen, dass solche Zustände, die vom störenden Rauschen weitgehend entkoppelt sind auch für diese Systeme existieren. "Der Trick ist das Quantensystem durch gezielte Manipulation in diese langlebigen Zustände zu bringen, damit die Information auch dort abgespeichert werden kann", erklärt Dmitry Krimer.

Bestimmte Energien ausschließen
"Durch die lokalen Eigenschaften des nicht ganz perfekten Diamantkristalls haben die Übergänge in den Stickstoffatomen leicht unterschiedliche Energien", erklärt Stefan Putz, Erstautor der Studie, der mittlerweile von der TU Wien an die Princeton University gewechselt ist. Wenn man mit Hilfe von Mikrowellen gezielt Stickstoffatome bei einer bestimmten Energien "ausbleicht" entsteht ein "Spektrales Loch". Die übrigen Stickstoffatome können dann in einen neuen Quantenzustand, einen so genannten Dunkelzustand, im Zentrum dieses "Spektralen Lochs" gebracht werden. Dieser ist viel stabiler und eröffnet völlig neue Möglichkeiten. "Unsere Arbeit ist ein Machbarkeitsbeweis für ein neues Konzept mit dem wir das Fundament für die weitere Erkundung innovativer Operationsprotokolle von Quantenspeichern legen wollen", sagt Stefan Putz.

Mit der neuen Methode konnte die Lebensdauer von Quantenzuständen des gekoppelten Systems aus Mikrowellen und Stickstoffatomen um mehr als das zehnfache auf etwa fünf Mikrosekunden gesteigert werden. Das ist in den Zeitmaßstäben unseres Alltags noch immer nicht viel, reicht allerdings für wichtige quantentechnologische Anwendungen bereits aus. "Der Vorteil unseres Systems ist, dass man Quanteninformation innerhalb von Nanosekunden einschreiben und auslesen kann", erklärt Majer. "In den Mikrosekunden, die es stabil gehalten werden kann, ist daher eine große Zahl von Arbeitsschritten möglich."

Diesen Artikel

Bewertung:

Übermittlung Ihrer Stimme...
Noch nicht bewertet. Seien Sie der Erste, der diesen Artikel bewertet!
Klicken Sie auf den Bewertungsbalken, um diesen Artikel zu bewerten.
  Sponsored Links:

IT-News täglich per Newsletter

E-Mail:
Weitere CW-Newsletter

CW Premium Zugang

Whitepaper und Printausgabe lesen.  

kostenlos registrieren

Aktuelle Praxisreports

(c) FotoliaHunderte Berichte über IKT Projekte aus Österreich. Suchen Sie nach Unternehmen oder Lösungen.



Hosted by:    Security Monitoring by: